The reverse Wagner/Within model with remanufacturing and
manufacturing options. Exact results and holding cost stability

regions

Sotirios Papachristos' and Ioannis Konstantaras
University of loannina
Department of Mathematics
Probability, Statistics & O.R. Section
45110 Ioannina

Greece

Abstract

In this paper, we study a reverse Wagner/Whitin production and inventory control model.
In such, reverse (product recovery) models, used products are returned back and stored for
possible future remanufacturing. The model supposes that cost and demand parameters are
constant over time and a sufficiently large quantity of used products is available at the beginning
of the planning horizon. We consider policies that take a given number of set up for
remanufacturing and manufacturing respectively. In this class of policies we find the optimal
policy, which specifies the number of periods where demand is covered either only by
remanufactured items or by newly manufactured items respectively, the periods where
remanufacturing or manufacturing activities take place and the corresponding lot sizes. Further,
we construct stability regions for the optimal policy, which are expressed as intervals of the ratio

of holding cost parameters.
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1. Introduction

Increasing environmental consciousness of customers and product take back
regulations of governments offer the possibility to satisfy customer demand from
recovered used products, instead of exclusively manufacturing new products and
disposing of all returned products. Inventory models for these product recovery
systems, share several features with two-supplier inventory models in that product
returns represent a second mode of supply in addition to the production alternative.
The European working group on reverse logistics REVLOG [5] defines four types of
recovery: direct reuse, remanufacturing, recycling and incineration. In the specific
model that we analyze in this paper, only remanufacturing is considered. REVLOG
defines remanufacturing as the process consisting of disassembly, cleaning, testing,
re-assembly etc., after which a product is as-good-as-new.

Since remanufactured products are as-good-as-new, they can be used to satisfy
demand for new products. For products that have not yet reached the end of their life-
cycle, there are typically more demands than returns. Hence, at least some demand
still has to be satisfied by manufactured (new) products. Such situations with both
manufacturing and remanufacturing, lead to interesting questions from an inventory
control point of view. When should products be manufactured or remanufactured and
in what quantities? When should returned products be disposed of?

In recent years, a number of authors have studied these questions. Laan et al. [3]
and also Inderfurth [2] studied review policies for production planning and inventory
control in stochastic manufacturing/ remanufacturing/ disposal systems. Richter [8]
applies the EOQ model to a similar deterministic manufacturing/ remanufacturing/
disposal system. Richter and Sombrutzki [7] in their pioneering article studied also
models, known now, as reverse Wangner/Within dynamic lot sizing models. One
characteristic of these models is the constant set up costs for remanufacturing and
manufacturing. Using suitable transformations, they managed to transform these
recovery models to models of the Wagner-Whitin type. They then proved the zero-
inventory-property for the optimal solution and solved them by the Wagner-Whitin
algorithm [11]. In a subsequent paper, Richter and Weber [6] extended the reverse
Wagner/Whitin type models by introducing variable manufacturing and
remanufacturing cost and for the case of time-constant cost and demand data, they
proved the optimality of a policy starting with remanufacturing before switching to
manufacturing. Closing this article, the authors speculated that the techniques used by



Papachristos and Ganas [4] and Chand [1] could be used to solve some of their
proposed models and especially to construct stability regions for the obtained
solutions. This speculation motivated the research presented in this paper.

In this paper, we consider a periodic review single-product recovery system
over a finite horizon. At the beginning of the horizon, we suppose that a sufficiently
large quantity of used products with low inventory cost is available. Demand at every
period is constant and is satisfied by remanufactured and/or newly manufactured
products. The so created stock is called stock of final products. Set up manufacturing
/remanufacturing costs and holding costs for used and final products are constant
while backlogging is not permitted. For this problem it is known [6] that, an optimal
policy is characterized by the following property. At the initial periods of the horizon
and up to some period, called switching period, demand is satisfied only by
remanufacturing. At the switching period remanufacturing activities stop and demand
for the next periods is satisfied only by manufacturing new items. We consider
policies that take a given number of set up for remanufacturing and manufacturing
respectively. In this class of policies we find the optimal policy which specifies: the
number of periods where demand is covered either only by remanufacturing items or
by manufacturing new items respectively, the periods where remanufacruring or
manufacturing activities will take place and the corresponding lot sizes. Continuing
we come to the other objective of the paper, which is the construction of stability
regions for the optimal policy, which in our case are expressed as intervals of the ratio
of holding cost parameters.

The paper is organized as follows: the second section contains the mathematical
formulation of the problem. In the third section we present results concerning the
structure of the optimal policy. For any switching period and numbers of set up for
remanufacturing/manufacturing the minimum cost for the problem is analytically
expressed as a function of these three parameters. This function is proved to be
convex with respect to the switching period. In the fourth section we propose an
algorithm which computes the optimal policy and constructs stability regions for any
combination of the holding cost parameters. The fifth section contains numerical
examples which illustrate the application of all results presented in the paper and
especially explains the application of the algorithm. Concluded remarks and proposals

for further research are given in the final, sixth section.



2. Problem formulation

We consider a single-item periodic review inventory recovery system over a

finite horizon T, having the following operative characteristics:

1

At the beginning of the first period, a quantity d(d=7D) of used products

(returned products) is in stock (recoverable inventory) waiting for
remanufacturing.

There are no further returns of used products in periods ¢=2,3,..,T, ie.
d=01=23...1T.

Demand D, at every period is constant and is satisfied either by remanufactured
products and/or by newly manufactured ones.

Remanufactured and newly produced products are considered to have the same
quality and value for the customer.

Set up cost S for making new products and R for remanufacturing used ones are
constant and independent of the quantity.

Holding costs H for final products (the term describes remanufactured and newly

manufactured items) and % for used products are constant at every period. They

are charged to the end of period stock and we suppose that 7 < H .

Shortages are not allowed.

The planning horizon is composed of T discrete time periods of equal length.
Used products, which have not remanufactured, are kept in a recoverable

inventory store until the end of horizon.

Additional notations, which will be used subsequently, are the following:

ERIE

E

the lot size of used products remanufactured at the beginning of period ¢

the lot size of new products produced at the beginning of period ¢

the inventory level of final products at the end of period #

the inventory level of used products at the end of period ¢

the number of remanufacturing set up

the number of manufacturing set up

the set {n,n +1,...T —n,}

the switching period (number of periods that demand is covered only by
remanufactured items), ke N, ={n,n +1,...T —n,}



P(n,n,,k) the set of policies covering demand for the first k& periods, k given, by
taking », remanufacturing set up and the rest 7' -k periods by taking n,

manufacturing set up
P(n,n,,X) the set of policies covering demand for the first x € X periods by taking

n, remanufacturing set up and the rest 7 —x by taking », manufacturing

set up, X is a subset of N,
|—x-l the smallest integer greater than or equal to x
| x| the largest integer less than or equal to x
1, 3.0
F(x) :
0, if x, =0

The cost for period ¢ of such a system is Rf(x,)+Sf(z,)+hy, + HI,. The
problem is to find the x,,z, which minimize the total cost and has the following

formulation:

®) win 3 (RF(5)+ 72+ + HIL) M

Tofe o)

yl =y0""x1 +d=d_x-[
yf ":_V;_; _xI t =2,3,...,T

1L =1 %%+ ~D t=12,..T
s.t. z T (2)
D x)=n, 3 f(z)=n
=1 t=1
Yo=1y=I; =0
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Additionally to this we are interested to study the stability issue for the obtained
solution.
3. Searching for the optimal policy

It is obvious from the introduction, that research on these reverse Wagner/
Within type models is really very limited. To the best of our knowledge there is no
other work on this topic except the two papers by Richter and Weber [6] and Richter
and Sombrutzki [7]. On the other hand, work on stability issues in lot sizing problems
is not much better. We cite here the two papers by Richter [9] and Voros [10] which

we consider as the most important contributions in the field.



Richter and Sombrutzki [7] have studied various models of the type considered
above. Using a simple but very clever transformation they transformed their models to
models of the Wagner/Within type. In this transformed form they proved the known
as “zero-inventory property” which for their case is mathematically expressed by the
following equations:

x,z, =0 =127
I (x,+2)=0 t=12,..7T. )

The first equation ensures that, at every period ¢ at most one of the
remanufacturing/manufacturing activities may take place, while the second ensures
that this will occur only if the inventory level of final products at the end of previous
period is zero. This key result enabled them to use the W-W algorithm to solve their
models. In a subsequent paper Richter and Weber [6] extended the above work by
introducing variable costs for the remanufacturing/manufacturing activities. In the
case of a model with constant demand and cost parameters and a large quantity of
used products available at the beginning of the horizon, they proved that an optimal
policy covers the first k¥ periods of the horizon only by remanufactured items and the
remaining ones only with newly produced items. So, at period k+1 production
switches from remanufacturing to manufacturing and this & fulfils the inequality

¢, <k+1<t +i,

where: 7, :{T+1-—R—;£J, £ =,VT+1— _}_E_;_.g], i :LE%J

For any ke K ={k: z,-1<k=<t +i -1} they found the minimum cost applying

the W-W algorithm and then compared these costs to locate the overall optimum k.
In this paper k¥ will be referred as a switching period.
3.1. Optimal policy in the set of policies P(n,,n,,k)

For given k problem P is decomposed into two subproblems. A pure

remanufacturing for periods 1,2,..,k and a pure manufacturing for periods
k+1L,k+2,...,T. These are:

(B) min'y" (Rf )+ hy, + HL) @



n=d-x
yt =y1—]—x; t=2,3,...,k
It =It—l+x:_D t=112=---9k

1. k S
Y re)=n, e

=1
I,=1=0
Xy, 20  t=12,..k
T
and () min Y (Sf(z)+hy, + HL,) ©

T or=k+1

yl :yk
75 =Iz—l +2z =D

s.t. > f(z)=n (7

I, =I,=0
oW ok, 2 0, t=k+1Lk+2,.,T

The realization of stock levels for used and final products for a problem with 7' =10,
m=3,n=2and k=7, are given in Figures 1 and 2.
Summing the three inventory equations of (5) we obtain:

IL+y=d-tD, t=12,...k. (8)
Using this relation, the holding cost in the objective function (4) is written as:
hy, +HI = h(y, + 1)+ (H =), = h(d—tD)+(H-h)I, =h(d-tD)+ H1,, t=1,2,.k
with H = H-h.
So, the objective function becomes:

zk:(Rf(x,)+H'I, +h(d D)) = i(Rf(xt)+ H'L,)+h(kd —@D)

and the pure remanufacturing problem is transformed to its equivalent:

k
(R) min ) (Rf (x)+H'L,)+W ©)
LI |
I=I_+x,-D t=12,..k
k
sit. Ef"“:"* (10)
L=l =10
x,1 >0 t=1,2,...k.



where W =khd-ﬂ;llho.
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Figure 1. The stock level of used products for a problem with horizon 7=10, » =3 setup
for remanufacturing, n, =2 set up for manufacturing and switching period k=7.
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Figure 2. The stock level of final products for a problem with horizon T=10, n, =3 setup
for remanufacturing, n, =2 set up for manufacturing and switching period x=7.

Although the used products balance equation for £, has been dropped, problems
R and B are equivalent because, as we shall see any feasible solution {x,,1}

generated by problem B, and extended by y, =d —tD—1I, is also feasible to problem

P, (the reverse is obvious).



Lemma 1. The extended feasible solution of problem B is also feasible for F,.

Proof. From y, +1, =d-tD, 1t=1,2,...,k, wehave

i [ t
y,=d-tD-1, = a’—tD—[Zx,. —tD} =d-) x,2TD-) x,20.
i=1 i=1 i=1
The last inequality step is valid because the quantity of remanufactured products will
not exceed the total demand. The y, also fulfill the inventory balance equations,
y,=d-tD-1,=d—(t -1)D-D-1I1_-x,+D=y, —x, t=2.3,...k,

nw=d-D-1I,=d-D-I,-x;+D=d-x,.0

Similarly the objective function of (6) becomes:

ZT: (Sf(z,)-khyt +HI,)= i (Sf(x,)+HI,)+(T —k)(d - kD)h

1=k+1 1=k+1

and problem P, is transformed to:

T
(B) min Y (Sf(z)+HL)+W (11)
ikl
I =1 ,+z-D
T
st r;] f(zr) =n, (12)
I,=I.=0
z,y,,1 =0, t=k+Lk+2,.,T

where W = (T —k)(d - kD)h.

Problems P and P, are of the type studied by Papachristos and Ganas [4] and
Chand [1]. The optimal policy to P, in the set of policies with 7, remanufacturing set
up is:

x,=k-np, set up of type g =[~":——| and y, =am —k set up of type S =l£J in

case kmodn #0. If kmodn =0 the above results to:

x, =0 setup of type @, = §, +1 and y, =n, set up of type ﬁ1=£:
m

where by a set up of type z we mean one which produces a lot to cover exactly the

demand for the next z periods.



The corresponding minimum cost is:

WD . (13)

C! (k,nl)=n1R+{x1 al(aé_l) +, ﬁl(@ _1)}D(H—h)+kdh-—k(k2+l)

The optimal policy to P, , in the set of policies with n, manufacturing set up is:

x,=T—k—n,p, set up of type a, ={-’;2———‘ and y,=a,n,—T +k set up of type

B, :{T-kJ, in case (T’ —k)modn, #0.If (T —k)modn, =0 the above results to:

n,
T-k
x, =0 setup of type @, = f,+1 and y, =n, setup of type B, = .
n,

The corresponding minimum cost is:
£ (k,nz) = n_ZS+[x2 az(a; D +y, ﬁZ(‘% _1)}DH+(T—k)(d—kD)h (14)
and

CT(k,nl,n2)=C1(k,nl)+C2 (k,m,) (15)

represents the optimal cost in the set of policies P(n,n,,k) and this is valid for any
given ke N, .
3.2. Optimal policy in the set of policies P(n,n,,X)

We shall now search for the optimal policy in this, wider than P(n,n,,k) class
of policies, where X will be suitably defined subsets of N, .
Let us consider the sets:

B ={k:mi<k<n(i+1), keN,iel},
C,={k:T-n(j+)<k<T-nj, keN,jeJ},

4,;,=BnC,

where 7 = {IZ{M” J={l,2,...,[—T ket T ]}
g ”

The collection of non empty sets 4, constitutes a partition of N, since

4,04, =D(l2i,j,#j,) and U 4 ,=N,. So for any ke N, there exist

jeJ

unique i€/ and jeJ such that, ke 4, ;. The first non-empty 4 ; setis 4 |,



T+l—-# —0

where i =‘A
T

1, while all other non—empty sets are derived by varying,

increasing and decreasing, the indexes i and j. For any set 4, we denote by

Sk
max 4, ;, min 4, ; its maximum and minimum elements respectively. If n, =min 4, ;,
Vo=max4,_, ., and n,=v,+1 we say that 4, 4_, ., are consecutive and more

specifically, we say that 4 ; is the predecessor of 4 _, ., while 4 is the

—-m,j+r
successor set of 4, . For each pair of consecutive sets 4, ; the following cases are
possible. A set having exactly one element may have a consecutive one with exactly
one element or with at least two elements and a set having at least two elements may
have a consecutive one with exactly one element or with at least two elements. This
observation will be useful in understanding the steps in the proof of theorem 2. Some
properties of these sets are given in the appendix (A), while the example given in

section 5 helps the understanding of their structure.

From the definition of 4, ; we have that isf—<i+1 and jsﬂ<j+l, for
m

any ke 4, ,#D. Also, for any ke 4  #J, any of the following kmodn #0,
kmodn =0, (T-k)modn, #0, (T —k)modn, =0 may be valid. Further, for any
iel, jeJ the intervals [i,i+1), [j,j+1) contain only the integers i and j. So for

any k € 4, ; # & we shall always have:

{iJ:i:ﬁls a =f+‘1, luJ=j=ﬁ2: a, =j+1=
m "
x,=k-ni, y=n(i+1)-k, (16)

x,=T-k—nj, y,=n(j+1)-T+k forany ke 4, #D.

Based on these relations, the expression (15) giving C,(k,n,,n,) becomes:

. ; iD(H —h . ‘DH )
CT(k,n],z,nz,J)=an+¥(2k—nl(1+1))+nQS+JT(2(T-k)—n2(j-l-l))
+Tdh-—k—§f‘—(2T+l—k), Vked , 2. a7

10



The indexes iel and jeJ were introduced into the cost function, just to
indicate its strong dependence from them. The importance of these indexes is

obvious, since they define the partition of N, into the subsets 4, ;, so that for any
ke 4,; we have the simple expression (17) giving the cost of the optimal policy in
the set of policies P(n,n,,k). Further to that, these indexes will play the key role in
the search to establish stability regions. For any non empty set 4, ; having at least two

elements we have

P(m.m.4,)= o Pnm,k)

We shall now search for the optimal policy in this P(n[,nz,A, .), wider than

,J
P(n,n,,k), class of policies. This requires studying the function C, (k,m,i,n,, j)-
The function f(x) defined on a set X of consecutive integers is convex, if the
difference function
A(xX)=f(x)—f(x-1), Vx,x-1eX

is increasing in x .

Forany k,k 1€ 4, ; the difference function of C, (k,n,,i,n,, ) is:
A4, (k)= AC, (k,n,,i,n,,j) = Cp (k,ny,iny, j)— Cp (k=1,n,,0,n,, j)

=(-j)HD - (T +i+1-k)hD. (18)

From (18) it is obvious that for i< j the difference A4, (k) is always negative
and increasing in &, and so C; (k,n,,i,n,, j ) is decreasing and convex on every such

4, set. For i>j, A4, (k) is again increasing and so C,(k,n,i,n,,j) is again

convex, decreasing for all k € 4, ; such that ) < Zjil_—k and increasing, for all
. P
ke A, ; such that -%I->w Moreover A4, (k) vanishes, if there exist a &
= ’
such that L0 E-I—ﬂ_—k

i-j

The above discussion leads to the following theorem.

11



Theorem 1. For any set 4, ; having at least two elements, the optimal policy in the
class of policies P(n] W J.) is the one with k,, defined as following:
1. Ifi<j, thenalways k,, =max 4 ;.
2. Ifi>j then:
a) For ky -1k, k,+1€ 4, and k; such that

T+i+1-(k +1) JH _T+ivl-k

i— 3 h ke
b) For k,—1,k, € 4, ;, such that %=I—%, Ko =ky o1 K, =Ky —1.
¢) Ifforall k-Lked,,, A4 (k)>0,ie. %>T+++;—k then k,, =min 4, .
d) Ifforall k-1,ke4,,;, A4, (k) <O, ie. —I]%<—Ef—;—l—-§:—’-c- then £, =max 4, ;.

In either case, the type and number of set up are determined by relations (16) and the
cost by (17). o
This theorem is useful by itself because it determines the optimal policy in the

class of policies P(n[,nz,A,., j), only with reference to the values of the ratio %

Moreover it is easy to see what is the stability region of the so obtained policy.
However, at present, we skip the stability issue as we shall come back to this with
detailed discussion at section 4. The application of this theorem is illustrated by, the
example given in section 5.

3.3. Convexity of the total cost function and overall optimal policy

It is obvious that the set of all admissible policies is
P(”v"zaNk) = UI%P(%”@Af,J)
J

and so the search for the overall optimal must be done within the set of policies
P(n,n,,N,). Further, if we denote by C,(#,,n,) the optimal cost for problem P in
the set of policies P(n,,n,,N,), this is obtained from:

€ (mam) = min(C; (i, 1)

12



We have already seen that C, (k,n,,i,n,, j) is convex on every 4; ;. To search
for convexity of C, (k,nl,i,nz, j) on the set N,, we need to have its difference
function for any k,k—1e N, and especially for the case that ke 4, while
k-1€4,_, ., .where 4, 4,_, . are consecutive sets. To distinguish this difference
from A4, ; (k) defined on 4, ;, we call it the jump of C,(k,n,,i,n,, Jj) between the

consecutive sets A

;s Aim ., and we use the symbol J ( . m) to represent it.
This jump is:

T(4ys A jor ) = Cr (Ms 1,115, ) = Cp (Vo mysi =, my, j+7) (19)
where n, =min 4, ; and v, =max4,_, o
Substituting C; (k,m,,i,7n,, j) from (17), we have:

J(4,,.4,

ij? r—m,f+r):
B D(H —h)
e

+%[ﬂ2r(2j+r+1)——2(Tr+j—vor):|—hD(T—VO)

[2(i +vom)—mn (2i +1-m)]

=P—2£[2(i+VOM)—mn[ (2i+1=-m)+nr(2j+r+1)=2(Tr + j-v,r)]

_5’22[2(”.,0”,)_,"”1 (i +1-m)+2(T -v,)] (20)

If we take into account the values of indexes m,r defining consecutive sets
(appendix A), from (20) it is easy to prove that:

e For all pairs of consecutive sets A4, jo Aipyr With i—-m<j+r we have
J (A].’ . . N) <0 irrespectively of whether i< j,or i> ;.
o For all sets 4, with /> j and its successor A o With i—m= j+r, we have

J(Az.,j,A,._m,J.w)<0,incasewhere m=1 and r=0. In case where m=0 and r =1

or m=1 and r =1, the sign of J (Al.‘ so J.H) depends on the ratio %

13



e Forall sets 4, with i> j and its successor 4,_, ;,, with i—m> j+r, the sign of
. H . . P
d (4,;:14,-_,,,,j+,) depends on the ratio ra Properties established for 4, ensure

that, in this case, we need to check only the values 0 or 1 for the parameters m,r .

We are now ready to establish the following.

Theorem 2. The function C; (k,ni,i, s ), k € N, , is convex with respect to k.

Proof. An outline is given in the appendix (B). ©
The convexity of the C, (k,nl,i,nz, j) over N, guarantees the existence of a

global minimum, which obviously occurs at the point k, where the difference
function AC; (k,n,i,n,,j) changes sign, if it changes, from negative to positive
values.

We have seen previously that A4, ;(k) <0 and J (Aj, i N) <0 for certain
combinations of the indexes i,j. So again from (18), (20) it is obvious that the

determination of k,, requires to compute the following:

S(Afj.):iz——T—"F:j;—"lc—:L—éfj,for i>j andall k,k-le 4, @1)
and
S(4, 4., )zﬂ_ 2(i +vym)—mn (2i +1-m)+2(T -v,)
Sl h 2(i+ vom)—mm (2i +1—-m)+ mr(2j+ 7 +1)=2(Tr + j—v,r)
=L- ji,j,ﬂ'i—m,j+r (22)

for all pairs of consecutive sets 4, ; , 4, with i > j and i—m> j+r . In case that

i-m,j+r

i—m=j+r, it is necessary to compute S(A. 4 ) only for m=0 and r=1 or

1,2 “Ti=m, J+r
m=1 and r=1 (for m=1 and r=0 the jump is negative). Based on the previous
discussion we propose the algorithm, which computes the optimal policy and

constructs its stability region.

14



4. The algorithm which computes the optimal policy and constructs its stability
regions

In this section we present the algorithm which determines the optimal policy for
any value of the ratio L= —-}‘;{ and constructs its corresponding stability region. The

steps of the algorithm are:
Step 1. Construct the sets B, and C,.

Step 2. Take the intersections 4, ; = B N C,. The first non-empty 4, ; setis 4,
Step 3. For any pair of consecutive sets 4, ;, 4,_,, ,,, determine ny =min 4, , ,
=max 4, . and the values for m and r needed in (22) (the properties
established for 4, ;, ensure that m,» can take only any of the values 0 or 1).
Step 4. For all suitable i > j determine the numbers 5,{‘1 , appeared in (21). Also for
all suitable i>j and i+m2 j—r , the numbers j ., .. appeared in (22)

(for reasons of better understudying, we have inserted the sign functions
instead of these numbers in Table 2).

Step 5. Arrange in increasing order the numbers 1, §* s g oo obtained in step

—m, j+r ?
4 (1 and o are included because these are the two extreme values for the
parameter L). Starting from 1 create all the intervals by taking pairs of
successive numbers. The limits of these intervals are obviously depended from

the sets 4, ;, and may correspond to pairs of numbers of any of the following

types:

L85 1 ) when k=max 4_, and 4,_, has at least two elements.

2, when 4, , has exactly one element.

]"Jlm.‘x A b —m,r+1 )5

k 0
51_,19 thh-m;+r): where k=mmA,.J +1.

Juh—m JJ+r? J—m _,l+r)’ where k = max A:-m JHre

)

5/7,68%; ), where k-1, k, k+le 4.

iLj *LF

L
(
-
4
-
- (Juemyoriy>Jijtiomger ) » Where 4, has one element.
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7

5k oo) where 4, is the last non empty set with 7> j, starting the

I_,l’

scaning from 4, , and has at least two elements, while £ =min 4, ; +1.

8. (j,.’ﬂ,._m,m,oo), where 4, ., is the last non empty set with i—-m=j+r,

and m=0, r=1o0orm=1, r=1.

Thesets 4., ,,.4;; , 4_, ., are non-empty consecutive.

If the ratio L belongs to any of the above defined intervals, the optimum

solution is easily determined and the interval is its corresponding stability

region. So we have.

Step 6. For any of the previously calculated stability regions, the k_, value for & is:

opt

1. For a stability region (1, 5k;m,1) or (l, T - ), k, =max4 _, or

kﬂ 3

=min 4, , respectively (note that only one of the two cases may

appear and the second case appears only if 4 , has exactly one

element).

2. For any stability region (
3. For any stability region (
4. For any stability region (5"” SF ), =k.

5. For any stability region

i R
5:;’ J:jh-—m;-f-r) kopt —mlnAi,j

J: jli—m,j+r? 1—m +r ko =max‘47'ﬁ-m,'+r‘
»J 2 o Pt J

L] 270

kK=min4, ;.

J’1+m ,i=rii _15.]1 Jli~m J-z-r)

6. For a stability region (é'fj, ) or ( jj.,ﬂ,._m,m,oo), k,, =min4,

Ko

=max 4, respectively (only one of the two cases may appear).

=m, j+r

7. We may also have cases that & satisfies the following:

a)

b)

Step 7. Use the

A =6%,;. If so then K =k or k,, =

=5 A If so then kop, =m1nAU OF T A,

h
s
h

k,

opt

obtained in step 6 and determine the optimal policy using (16).

The results of theorems 1 and 2 guarantee that the % intervals determined in

Step 5 are stability regions for the £,

values calculated in Step 6.

opt
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S. Numerical Example

We consider a problem with 7' =30, n, =5 and n=4.
The sets B, C, and 4, ; are:

B,={5,6,7,8,9} C,={23,242526}  A,=B NC,={56}
B,={10,11,12,13,14} C,={19202122}  4,=BNC,={7,89}
B,={15,16,17,18,19} C,=(15,16,17,18}  4,,=B,NC,={10}
B,={20,21,22,23,24} C,={11,12,13,14}  4,,=B,NC,={11,12,13,14}
B,={25,26,27,28,29} C,={7,8,9,10} 4 =B,NC,={15,16,17,18}
C,={3.4,5.6) 4,,=B,NC,={19}

4, =B,NnC,={20,21,22}
4, =B,NnC={23,24}
45, =B;NC={25,26}
Let us take the sets 4,,={11,12,13,14} and 4,,={20,21,22} to illustrate the
application of theorem 1. For the set 4, ,, we compute the difference functions which

are:

A4, ,(12)=C,,(12,5,2,4,4) - C,, (11,5,2,4,4) =—4HD - 21hD <0,
A4, ,(13)=—4HD—-20hD <0 and A4, ,(14)=—4HD~-19AD <0. So the optimum in
the class of policies P(m, =5,n,=4,4,,) is k,, =max 4,, =14.

For the set 4, ,, we compute Ad,,(21)=2HD-14hD = 2hD[%— 7) and

A4,,(22)=2HD-13hD = 2hD(%-—%j . For any % € [%,7) , the optimal policy

has k,, =21 and the interval (E,’?J is its stability region. If L 7, them k=21
2 h ki

or k,, =20.

We shall now explain how to find the optimal policy and its corresponding

stability region for any set of values H,% having a ratio L = % .

17



Applying steps 3 and 4 of the algorithm we compute 5, on each of the sets

4,,, 4,,, 45, and similarly the j, j1i-m j+» 10T all consecutive pairs of sets,

A, 4,,,4,,,4,,4,; . Sowe have:

S(Afz’l):‘[’_asz,? =L_1_4q’ S(A5,15A4,1 )=L—j5,1f4,1 :L_‘13E,

2

S(4)=L-e2 =1-1 (4,4, ) =L jyypp =L -4

S(42)=1-62 =L-125, S(42)=L-62 =L-7

2

S(Ao,,z; A3,2 )=L—j4’2;3,2 =L-14 and 5’(1‘13,2,/1,_,"3 ): L_j3,2f3,3 =I-15.

The stability regions are:
10

[1,—], [E,E], 19,5], 1—1,4), [42} 9,7} (7,14), (14,15),(15, ).
ST IEI S ELE) AF 2 )%\ 2

Now for any L interval we apply step 6 to find kOP, . Example for Le (l, %) ,

k. =26, while for L e[—l-(-)—, E—), k.. =25. Using the same procedure, we can
4’3

calculate all other &, values. The results are given in Table 2.

The cost function of the above problem with H =10, h=2, d=30, D=1,
R=5 and § =3 is given in Figure 3.

L R e o

............................................................................................

-----------------------------------------------------------------------------------------------

............................................................................................

N SIS S L N PCH [ e (e (o I I . W Rt
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 3. Cost function for a problem with T =30,m=5n,=4H=10,h=2,d=30,D=1,R=5,8=3.

18



6. Conclusion

In this paper, we have studied a reverse Wagner/Whitin type production and
inventory control model. For this model, we supposed that cost and demand
parameters are constant and a sufficiently large quantity of used products is available
at the beginning of the planning horizon. We considered policies with given number
of set up for remanufacturing and manufacturing respectively. In this class of policies
we found the optimal policy, which specifies the number of periods where demand is
covered either only by remanufactured items or by newly manufactured items
respectively, the periods where remanufacturing or manufacturing activities will take
place and the corresponding quantities. Further we constructed stability regions for
the optimal policy, expressed as intervals of the ratio of holding cost parameters,
which is the main objective of the paper.

Although stability issues are quite difficult and hard problems it is hoped that
further research on the following can give some results. Consider policies with
variable numbers of set up for manufacturing, remanufacturing and try to obtain
stability regions for the so obtained optimal policy. The model can be extended to
include variable manufacturing remanufacturing set up cost. Although such models
are much more complicated there is some evidence that similar stability results can be
obtained. The case, where the initial stock of used products is not enough to cover the

total demand for the whole horizon, still remains to be examined as it is also noted in

[7].
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Appendix A. Properties of sets 4, ;

We shall present here the properties of the sets 4, ;. The important question is
which of the 4, ; are non empty. Let us suppose that 7, > n, i.e. the number of set-up
for remanufacturing is greater than the number of set-up for manufacturing. Then the
following are true:

1. Forany i, satisfying the relation ni+n,j<T-n —n,+1, wehave 4, =0.

2. For any i,j satisfying the relation 7' —n —n, +1<ni+n,j<T—n+1, we have
4,#9D.

3. For any indexes i,j satisfying the relation” —m +1<mi+n,j<T—n,+1, we
have C; c B, and so 4, ; =C, and has exactly n, elements.

4. For any indexes i,j satisfying the relation T—n,+1<mi+n,j<T, we have
4,#9D.

5. For any indexes i, j satisfying the relation 7 <nmi+n,j, wehave 4, , =

Based on the above properties we have the following results which characterize
the non empty consecutive sets.
o If 4,#O andtherelation T—rm —n, +1<mi+n,j<T —n +1 is fulfilled, then
the non empty successor to 4, ; setisthe 4 ;.
o If 4,#D and the relation T—m +1<ni+n,j<T—n,+1 is fulfilled, then the
non empty successor to 4, , setisthe 4, . If ni+n,j=T—n,+1, then the non
empty successor to 4, ; setisthe 4, ;.
e If 4,29 and the relation T—n,+1<ni+n,j<T is fulfilled, then the non
empty successor to 4, ; setis the 4, .
These are the only cases where non empty successor to 4, ; sets are defined.
Let us now suppose that », <n,. Then the following are true:
@) Forany i, satisfying the relation ni+n,j<T—m—n,+1,wehave 4, =3 .
b) Forany i,j satisfying the relation 7 —# —n, +1<mi+n,j<T —n, +1, we have
4,29,
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¢) For any indexes i, satisfying the relation? —n, +1<mi+nj<T-n +1, we
have B, cC; and so 4, , = B, and has exactly » elements.

d) For any indexes i, j satisfying the relation 7' —n +1<mi+n,j <T, we have
4,29,

e) Forany indexes i, j satisfying the relation T <ni+n,j, wehave 4, , =9 .

Based on the above properties we have the following results which characterize

the non empty consecutive sets.

o If 4 #O andtherelation T—nm —n, +1<mi+n,j<T —n, +1 is fulfilled, then

the non empty successor to 4, ; setisthe 4 .

o If 4,#2 and the relation T —n, +1<ni+n,j<T—-n +1 is fulfilled, then the
non empty successor to 4, ; setisthe 4 ;. If mi+n,j=T—n, +1, then the non
empty successor to 4, ; setisthe 4, ;.

o If 4,#9 and the relation 7—n +1<mi+n,j<T is fulfilled, then the non

empty successor to 4, ; setisthe 4, ;.
Appendix B. Proof of theorem 2

To prove the convexity of C; (k,nl,i, s, F ) , we must establish that its first
difference is an increasing function of k. Checking carefully all possible cases that
may occur for the sets 4, ; and between consecutive pairs of them, we result that this
requires to prove the following:
First:

A, (k ) >J (Af,j’Ai,m )= A (k) >J (Af,_f oA )’ Ad, (k) 2 J(Af,j oA )

for any 4 ; having at least two elements and its possible successor non empty sets
40> A, s Ay, - The difference A4, (k) is calculated at k=min4, , +1.

The above relations ensure that any difference is greater than the jump which may
follows immediately.

Second:

J(AH],J"A!',J') > A4, (k), J(Ai,j—vAv‘,j)> A4, (%), J(Ai+1,j—l’Ai,j ) >Ad, ; (k)
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for any 4, # @ set having at least two elements and its possible predecessor sets
Ay A s Ao - The difference A4 (k) is calculated at k =max 4, .

The above relations ensure that any jump is greater than the difference which may
follow immediately.

Third:

L J(4udy)>I(4540;)
A]+lj 12 tj)>J(AJJ’A1—1_;)
Lyl | T (A ey )
A‘l+lj’ )>J(AJJ’AIJ+1)

(
(
(
(
S (CRIE N E
(
(
(4

2.

ey

3. J

N
~

=)
<~

A

i_j—l’

4,)>J(4,,.4

i,J2 U+l)

7. J AH_U, )>J(A;_;=A1—1;+!)
. ,»15 )>J (Ai,j’Af-lJﬂ)

. Ty )> (A A )

for any set 4 ; having exactly one element and all other sets involved in the above

8. J

inequalities having at least one element. All pairs of sets appeared in parenthesis in
the above relations are consecutive.

The above relations ensure that any jump is greater than the jump which may follows
immediately.

We shall prove only the following three inequalities:
A (k) > T (4,4 511)> T (Ao ) > A4, () and T (4,0, 4,,)> T (4,,.4,,)-
The others are proved similarly.
Using (18) and (20), A4, (k)>J(4, .4, ,,,) becomes:
(i~j) HD—(T +i+1) hD+(n, +1) AD> i(H~h) D—~(T + j —v, —m, (j +1)) HD—(T v, ) hD,
where n; =min 4, ; and v, =max 4, ., . From the above relation we obtain

H(T -v,—n,(j+1))+h>0.

23



This is valid because v, =max 4, ,, and from the definition of 4, it follows
vy ST —n,(j+1).
Similarly J (4, ;,4,;)> A4, ; (k) gives:
(i+1+v,—n, (i+1))(H k) D~ jHD (T —v,)hD > (i - j)) HD—(T +i+1-v, ) hD,
where n, =min 4,,, , and v, =max 4, ;. From this we have
H(vy+1-n, (i+1))-h(vy—m (i+1))>0=>
H (ny—n (i+1))=h(v, —m (i+1))>0.
But since n,=min4,, ; and v,=max4 ;, we have n,—n(i+1)20 and
vo—m(i+1)<0, whjéh establishes the inequality.
Using (18), J(4,;,,4,;)>J (4, ,.4_, ) becomes:
i(H-h)D+(nj-T—j+v,) HD-(T-v,) hD >
>(i+n,—ni)(H—h)D—- jHD-(T —n,) hD
where n, =max 4, ,, 4, ={v,} and vy =min 4, , . Form this we have
H(v, =T +n,j+mi—ny)+h(v,—ni)>0.
But, since n,=max4._,, 4,={v,} and v,=min4 ,, we have mi-n,>0,

W—T+n,j>0 and v, -ni=0.0
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Table 2. Solution table for 7 =30, n, =5, n,=4.

L) \ﬁ.:__ Yo o i .m.ﬁmcu Sl %ﬁ. ) A\m: 3 \AT.__._.Z. v = L= .m .@&x m \ﬁa_s.
h h
L- Frgtvompie stab. reg
3,3 {15,16,17,18} 18 It is always negative
0,1 . L= figres = E~15 15<L 18 L=15 18,19
3,2 {19} 19 19 -
1,0 Loy, =L-14 14<L<15 19 L=14 19,20
4,2 ,Mmc,m_,wmv 22 20 L-8%=L-7 T<L<14 20 L=17 20,21
L-803=L-13/2 132<L=x7 21 E=132 21,22
0,1 L-ju2=Lk-4  4<L<13f2 22 L=4 22,23
4,1 {23,24] 2423 L-8,"=L-11/3 113<L<4 23 L=11/3 23,24
1,0 L-joa=L-10/3  103<L<1y3 24 L=10/3 24,25
51 {25,26} 26 25 L-62=L1-10/4 194<L<103 25 L=10/4 2526
1<L<10/4 26
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